skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liang, Tianyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work focuses on accelerating the multiplication of a dense random matrix with a (fixed) sparse matrix, which is frequently used in sketching algorithms. We develop a novel scheme that takes advantage of blocking and recomputation (on- the-fly random number generation) to accelerate this operation. The techniques we propose decrease memory movement, thereby increasing the algorithm’s parallel scalability in shared memory architectures. On the Intel Frontera architecture, our algorithm can achieve 2x speedups over libraries such as Eigen and Intel MKL on some examples. In addition, with 32 threads, we can obtain a parallel efficiency of up to approximately 45%. We also present a theoretical analysis for the memory movement lower bound of our algorithm, showing that under mild assumptions, it's possible to beat the data movement lower bound of general matrix-matrix multiply (GEMM) by a factor of sqrt(M), where $$M$$ is the cache size. Finally, we incorporate our sketching method into a randomized algorithm for overdetermined least squares with sparse data matrices. Our results are competitive with SuiteSparse for highly overdetermined problems; in some cases, we obtain a speedup of 10x over SuiteSparse. 
    more » « less